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Abstract

In this report, we discuss a deep-learning approach to image classification and generation based on sparse image
corpora. We present a variety of black-box neural network approaches to training deep convolutional generative
adversarial neural networks (DCGANSs). We report the highlight of our generated images and classification results,
compare these results with traditional machine learning models, and discuss the limitations of the model.

1 Introduction

Neural networks have become a standard method of solv-
ing non-convex regression and classification problems due
to the increase in computing power and ease of imple-
mentation with regularly updated programming libraries.
Their combination with zero-sum game strategies found in
economics and artifical intelligence has led to the creation
of generative adversarial neural networks (GANSs), a mini-
max model consists of a system of two neural networks:
a discriminator takes the input image and classifies the
images, and a generator forges increasingly better data
to “fool” and as a result improve the accuracy of the
discriminator.

A limitation of neural network-based models, however,
is that they typically function under a large corpus of data
and require large-scale computation. In this project, we
explore techniques and limitations of applying DCGANs
to sparsely populated datasets. We will show that:

- a limited corpus of data provides little information
about the desired generated images

- a limited corpus of data quickly leads to overfitting
in more complex models

- despite the sensitivity of the model, DCGANSs are
able to learn general traits about a sparse dataset
relatively quickly.

We finally provide our code and instructions for repli-
cating our results in the appendix.

2 Project Objective

The purpose of our project is first and foremost to explore
recent machine learning techniques by implementing a
functional, parameterized deep convolutional generative
adversarial neural networks (DCGAN). Beginning this
project, we were constrained by limited computational
resources, restricting us to small datasets. With this in

mind, we set relatively simple goals of beating our baseline
model by any nonzero threshold and generating images
that are better than pure noise.

To achieve these goals, we opted not to use preset pack-
ages such as scikit-learn and instead to fully customize
the model using PyTorch, an experimental imperative
Python-based machine learning library published by Face-
book Research. This allowed us to abstract many of the
statistical details while still having the flexibility to exper-
iment with our model.

3 Related Resources

Several publications have helped us better understand the
process of building and tuning DCGANSs for our project.

3.1 CNNs

The ImageNet classication paper by Krizhevsky et al. [°!
provides many of the fundamental principles required for
building convolutional neural networks (CNNs). Most
notably, strategies to reduce overfitting including data
augmentation and dropout are mentioned as well as a
discussion on incorporating ReLU nonlinearity and nor-
malization.

3.2 DCGANSs

A paper by Radford et al. on DCGANs [7 suggests a
novel layer architecture suitable for training on unclassi-
fied data that differs from traditional methods of neural
network convolutions. The paper suggests the use of the
LeakyReLU activation, batch normalization in both the
discriminator and generator, and removing the use of pool-
ing layers in exchange for strided convolutions in both the
discriminator and generator.



3.3 Loss Function

Janocha and Czarnecki wrote a useful paper ¥/ on the
use cases of many loss functions. In particular, we are
interested in the binary cross-entropy loss since we would
like to detect how far our parameter distribution devi-
ates from the true distribution of a binary classification.
Specifically, cross-entropy loss function is calculated as:

H(y,9) = =Y yilogy;

3.4 PyTorch

It is worth mentioning our use of PyTorch, a Python li-
brary for writing machine learning programs under an
imperative paradigm. Unlike TensorFlow, PyTorch pro-
vides access to intermediate calculations in a neural net-
work computation graph. Unfortunately, the library at
this time is quite unstable as much of its functionality is
still being regularly added to this day. Nevertheless, the
neural network package was more than sufficient to build
our model’s architecture as most of the tools mentioned
in our relevant resources already had implementations in
the library.

3.5 Odyssey

We later got access to Harvard’s cluster computing service,
Odyssey. By SSHing into a remote server, we were able
to batch run numerous jobs at once. One major pitfall
of Odyssey, however, was that its graphics drivers are
currently too old for PyTorch to use its GPU library, so
we were left with running exclusively CPU-based imple-
mentations on Odyssey.

4 Datasets

4.1 Van Gogh Dataset

Our data was collected from the ICIP Van Gogh image
dataset [l which contained 333 high-resolution images of
paintings by various painters. 124 of the paintings are
definitively made by Van Gogh, while two others are either
controversially by Van Gogh or disputed to be by Van
Gogh. For simplicity, we decided to classify these two
paintings as paintings by Van Gogh, totaling 126 samples
in our positive class and 207 samples in our negative class.

Despite the small dataset, image processing was still
intractable due to the large and irregular dimensionality
of the images. Our solution was to resize the images to be
64 x 64. With the reduced image size, our three-channel
RGB images can be expressed as a vector x € R3x64x64
with z; € [0, 255].

After working through several iterations of models,
we then decided to normalize each pixel’s channel to be
between -1 and 1. Thus, the range of some feature x;
would now lie in the range [1—, 1]. Doing so minimizes the
scale of mathematical operations, reducing imprecision
from floating point calculations.

4.2 Kaggle Cat-Dog Dataset

As we gained access to more powerful computing power
through Odyssey, we also began to experiment with a
secondary dataset of cat and dog images from Kaggle. 4!
This dataset is comprised of 25,000 labeled images of cats
and dogs in a variety of poses and breeds. Like the Van
Gogh paintings, these images were also downsized to be
64 x 64 when fed into the DCGAN.

5 Model Architecture

Our DCGAN consists of two neural networks. The dis-
criminator, known in the literature as the detective, is
a multi-layer convolutional neural network that takes an
image as an input and classifies it as “Van Gogh” or “Not
Van Gogh.” The generator, also known as the forger, is a
deconvolutional neural network (DeCNN) that produces
a random input seed vector and generates an image.

Over several iterations, as the discriminator becomes
better at both classifying the training data and forged data
from the generator, the generator learns to create better
forgeries that are able to trick the discriminator. The
generator’s training is done without ever having access to
the true training data.

5.1 Layer Design

The CNN and DeCNN are roughly inverses of one another.
The CNN consists of a set of convolutional layers followed
by a final linear projection onto two weights represent-
ing the unnnormalized probabilities of each class. Each
convolutional layer consists of the following:

- Convolution: selects weights for the next layer based
on a filter of weights from the previous layer

- Dropout: zeros out weights randomly to prevent
overfitting

- Batch Normalization: normalizes the weights as a
form of regularization

- Leaky ReLU: allows for nonzero gradients to prevent
overfitting

- Max Pooling: dimensionality reduction
In contrast, the DeCNN consists of several deconvolu-

tional layers followed by an output Tanh layer. Each of
these convolutional layers consists of:



- Transpose Convolution: “deconvolution”
- ReLU
- Batch Normalization

- Max Pooling

Note that regular ReLU is used instead of Leaky ReL.U,
preventing exploration toward negative weights. Further-
more, there is no dropout since we would like to preserve
all information during image generation, and the final
layer is a Tanh which maps pixel channel values to a num-
ber between -1 and 1. During image generation, these
values are scaled between 0 and 255 to represent RGB
colors.

5.2 Parameter Space

In terms of these functional components in each convo-
lutional layer, all of the layers are identical within each
neural network. However, the parameters that define the
convolutional layers may vary widely from model to model.
The following are the parameters to our convolutional lay-
ers:

- number of layers

- kernel dimensions at each layer: size of the filter
used to perform convolutions

- channels: number of features learned at every layer.
The more features, the stronger but the more com-
putationally expensive the model becomes.

- strides: distance a filter travels for each weight cal-
culation

- padding: adjustments for dimensionality

- pooling: scale of dimensionality reduction

Furthermore, the neural networks themselves differ in
initialization as well. We design our neural networks to
have the following hyperparameters:

- input/output image dimensions. This is set to 64 x 64

- the number of generated samples when comparing
models and and training the generator

- batch size: the number of samples to process at a
time. With smaller batch sizes, gradient updates
tend to perform more quickly at the cost of sample
skew due to stochasticity.

- learning rate: step size when gradients are updated

- train/test split: 40% of our data is reserved for
testing, while the rest is for training

When tuning these parameters, it is important to note
that the output size at each layer is a function of the
strides, padding, pooling, and kernel dimensions. Since
the CNN expects a fixed size input, it must be the case
that the parameter configuration for the DeCNN yields
the same image size.

6 Model Training

6.1 Loss and Accuracy

We measure the performance of our DCGAN in com-
parison with the regular CNN classifier. To do so, we
ran different configurations of our model over up to 1000
epochs. The model alternates training between training
the discriminator and the generator based on the out-
puts of one another. A training epoch is defined by the
following pseudocode:

def train(d, g):

train discriminator on real data
.train(training_data)

Train discriminator on forgeries
.train(g.forge())

Train generator to forge images
that trick discriminator

.train(d)
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Thus, for each epoch, three gradient updates are made,
one on discriminating the original training data, one on
discriminating forged data, and one on generating forg-
eries. We will refer to each of these losses as “Detective”,
“Compare”, and “Generator”, respectively. We use the
Adam Optimzer set at a learning rate of 0.001 with the
loss function being defined as the per-unit cross entropy.
Using 8 cores of CPU with 5GB of RAM, we are able to
complete one epoch of a reasonably dense 5-layer CNN/7-
layer DeCNN GAN in about half an hour.

7 Results

For our initial exploration, we run several baseline models
with low channel density and a few number of layers to
ensure that our model functions without error. From the
results in Appendix B, we can see that the generated im-
ages are, as expected, lacking recognizable patterns and
complexity. Already, the similarity between images over
epochs indicate signs of mode collapse. The problem and
solution are discussed in Section 8.2 and 9.1.

We now present some of the highlights of our results
and iterative model development.
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Table 1: Many-Layered Image Generation
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Table 1 summarizes the generated images from the best
DCGAN model (high channel density) so far, and poten-
tial improvements from adding more layers and exercising
on a larger dataset (i.e., cat-dog).

Comparing the first and the second row in the table,
we see an increase in detail, structure, and tonal complex-
ity that far surpass the baseline generators. Regarding
the accuracy curves, the train accuracy quickly goes to
one in the first 200 epochs. This indicates that, due to our
small dataset, our model quickly to overfit our training
data. As for the loss curve, the trend of the generator
loss (the generator should create images that fool the dis-
criminator) and compare loss (expected to increase; the
generator should trick the discriminator) are inverted.

The results in the third row from cat-dog datasets
are more promising. The images depicted are produced
by the model run over 7 days but only over 10 epochs.
Due to these computational demands of the model, we
were unable to generate more detailed images. The plots
displayed show a model with the discriminator training
alone. From the loss plot, we see that the loss converges
to 0, showing again that our model overfits the data. The
test accuracy reflects this overfitting with a high training
accuracy and a relatively low test accuracy, though the
results are still signicantly better than the baseline model.
Since most of the literature on deep learning suggest train-
ing DCGAN model with hundreds of layers and millions
of data points, while we were only able to train 15 layers
with 333 images for the Van Gogh dataset and 25,000
for the cat-dog dataset, these results are not surprising.
Nonetheless, we believe the model has the potential to
generate better images with a larger dataset and more
computational power.

8 Analysis

We now explore the shortcomings of our model.

8.1 Overfitting

In some of our initial experiments, we trained the gener-
ator against an equally strong discriminator. However,
the generated images were almost indistinguishable from
random noise, and the discriminator and comparison loss
quickly approached one after a few iterations.

As several research paper discussed, with such small
corpus of training data, it is very likely that the discrimi-
nator is overfitting the data. As a result, the discriminator
is effectively “too strong,” understanding its training set
too well to allow the generator the chance of misclassifi-
cation and therefore information about how to generate
better images. As a solution, we tried to weaken the
discriminator by decreasing the number of layers in the
CNN. After training several models with weak CNN, we
then began to generate more meaningful images. This

is not to say, however, that weakening the CNN strictly
increases the performance of the generator. If the CNN is
too weak, then the predictive power will be weak, giving
the generator the impression that all images it generates
are good. In our experiment, we found that even with a
single layer CNN, discrimination between forgeries and
true images was good, though our generated images be-
came weaker. This too would be a byproduct of the small
dataset. Results of some of these models are included in
Appendix B.

8.2 Mode Collapse

Mode collapse is a common problem in training genera-
tive adversarial neural networks. When the discriminator
tends to outperform the generator as in the case of having
small training datasets, the generator would end up finding
one “mode” with a high probability of discriminator error
during an epoch and latch onto these generations. The
discriminator then learns to respond to solely these types
of images, until the generator finds another such mode
and generates those images instead. The generator then
hops back and forth between these two types of images,
decreasing the diversity in our generated images.

A post from Nibali [0 suggested several possible solu-
tions to the problem, most of which require more complex
parametrization and larger GPU capacity. As discussed
in Section 7, we can improve the diversity of images by
introducing model complexity and increasing the training
set size. Alternative solutions to solve mode collapse are
discussed in Section 9.1.

8.3 Model Comparison

To explore the best performance in classification with-
out the concern of over-fitting, and possibility to classify
paintings accurately with any model, we train a strong
CNN with 10 layers, and compare its accuracy with tradi-
tional statistical and machine learning models, including
logistic regression with regularization, random forests and
gradient boosting.

In logistic regression, due to the high dimensionality
in the data, we apply lo regularization and choose A ac-
cording to 5-fold cross-validation. In random forest and
gradient boosting, we apply fine tuning on all flexible
parameters. Details in parameter tuning are included in
code files.

From table 2, we can see that, because of the incon-
sistency of artists’ style in every paintings, none of the
models achieves significantly better accuracy than the
baseline model (i.e., classify all images as non-Van Gogh).
Both neural network models have a similar performance
with common tree-based machine learning models. Like
the neural networks, the training accuracy of gradient
boosting approach 1 very soon.
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Table 2: Model Comparison

Test Accuracy

Cross Entropy

Baseline 0.609 0.609 N/A

Logistic Regression | 0.628 0.608 0.675

Random Forests 0.803 0.635 0.653

Gradient Boosting | 1 0.670 0.631

CNN only 1 ~ 0.67 0.01

DCGAN 1 ~ 0.67 Detective: < 0.01, Compare: < 0.01, Generator: > 3.6

9 Discussion

We now discuss methods that may improve future itera-
tions of this project.

9.1 Encouraging Diversity

In a post on mode collapse, ! the author introduces several
ways to deal with the issue in GANs. Directly encourage
diversity by minibatch discrimination and feature mapping
may be the most applicable method in our case.

Specifically, we can use batches of samples to directly
assess diversity in the generated images. With minibatch
discrimination, the discriminator compares images across
a batch to determine whether the batch is real or fake,
instead of evaluating individual samples. In contrast, fea-
ture mapping modifies the cost function in the generator
to generate more diverse samples. Other solutions include
using unrolled GANs, showing old forgeries to the discrim-
inator repeatedly and multiple GANs which would have
differing initial seeds to generate more diverse images at
the cost of computation.

9.2 Data Augmentation

Considering the limited number of work by an individ-
ual artist, we propose two possible ways to augment the
training data for Van Gogh dataset. First, we can “du-
plicate” each painting by rotating, squeezing, stretching
and slightly tinting an original image. Doing this not
only enlarges the corpus of training data, but may also
increase the diversity of the shade and brightness in gen-
erated paintings. Another solution would be to tile the
input images. The uniqueness of a painter is not found
in the content of the image, but rather in the texture
and techniques applied to generate the image. Thus, we
could cut our high-resolution images into multiple small
pieces rather than resizing them directly. In this way,
all information in the original image is kept, giving us

more information in model training. This is a common
technique used in style transfer learning, though we were
concerned about generating textures rather than paintings,
so we decided not to attempt this technique here.

9.3 Alternate Datasets

Other than the volume of data, another deficit in the
nature of Van Gogh data set is the inconsistency of fea-
tures in the paintings of the same class. It is very hard
to identify Van Gogh’s work among all paintings even for
human beings. As we can see in Section 7, the results from
cat-dog images are more promising, because the features
within each class are more consistent and the volume of
data is significantly larger.

Hence, we believe that GANs are more suitable for
images with more consistency and is only satisfying with
a large amounts of training data.

9.4 GPU Computing

Had we had access to a proper GPU computing cluster, we
would have been able to test more complex models which
would have been essential for the scope of this project.
Most of the literature on image generation requires neural
networks with over one hundred layers. Because we were
restricted to such a small number of layers, our images
lacked the detail and complexity found in the real images.

9.5 DeLiGAN

As Gurumurthy Sarvadevabhatla and Radhakrishnan pro-
pose in their recent paper 2/ | DeLiGAN is a novel GAN-
based architecture for diverse and limited training data
scenarios. By reparameterizing the latent generative space
as a mixture model, the performance of the model under
limited data significantly improves. However, even with
this new method, the model is trained with 60,000 images,
while we only have 333 in this project.
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Appendix A Running Instructions

To run the code, please download the released version linked here: https://www.dropbox.com/s/a4fp1480u7xhwlu/
cs182_vg_gan.zip?d1=0. The file contains a code folder as well as datasets. The code is written in Python 3.6. To
run the GAN training process, you can type:

python main.py [generated_file_name] [ vg | catdog ] [test]

The generated file name is the file name affix of all images generated by the generator. These images can be
found in the created results folder. vg and catdog are two dataset keywords that define whether to use the Van
Gogh or cat-dog dataset. Finally, by including the word “test” at the end of your command, you can test the GAN’s
functionality on a small subset of the data with a tiny model.

Here are some examples:

python main.py generatedVanGoghs vg
python main.py test vg test
python main.py generated_catdogs catdog

Additionally, there is a main_cnn.py file which only runs the convolutional neural network. The test keyword does
not work, though you can run it on the datasets with the same format as above.

If for some reason the above does not work, you may view just the code in a repository here: https://github.
com/hahakumquat/vg_gan. The repository includes a CSV file containing URLs to Van Gogh images as well as a
README containing a link to the Kaggle cat-dog dataset. To download each of the images from the CSV, you can
use the jpg_extract function in utils.py to download the images into a folder directory data_vg/raw/*.

For sklearn models, simply run the file sklearn.py in the code folder. Parameters of the final random forests are
chosen based on generated plot in the same folder “foo.png” and “foo2.png”. Parameter tuning and model training
for gradient boosting and logistic regression are done automatically in the file.
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Appendix B Work Distribution

Michael Ge was in charge of writing the PyTorch code for the DCGAN, DataLoader, plotter file, and utils file and
wrote up sections 1-7 of the final writeup.

Anni Wang was in charge of tuning sklearn models(including logistic regression, random forests and gradient boosting),
design of poster, and section 7-9 in the final writeup.

Appendix C Additional Images

Below are more images generated by the GAN for other configurations:

Table 3: Low Channel Density Image Generation
Initial Epoch Middle Epoch Final Epoch

1-layer
CNN/1-layer
DeCNN

2-layer
CNN/7-layer
DeCNN

Table 4: Tanh-normalized High Channel Density Image Generation
Initial Epoch Middle Epoch Final Epoch

1-layer
CNN/7-layer
DeCNN

5-layer
CNN/7-layer
DeCNN




n_estimators max_depth

0.6650
0.6625 | 0.60 1
0.6600 |
0.6575 - 0399
0.6550
0.58 4
0.6525
0.6500 0574
0.6475
T T T T T r T T T r T T T T
100 120 140 160 180 1 2 3 4 5 6 7 8 9
min_samples_split min_samples_leaf
0.60 0.625 -
0.59 0.620 4
058 1 0.615
0574 0.610
0.56 0.605 4
0551 T T T T T T 0.600 4 T T T T T T T T T
2 5 6 7 8 9 100 105 110 115 120 125 130 135 140
max_leaf_nodes min_weight_fraction_leaf
0.64 0.645 1
0.63 0.640 4
0.62 0.635
0.61 4 0.630 -
0.60 1 0.625
0.59 4 0.620 -
0.615 -
0.58 1 T r T T T T T T T T T
0 20 a0 60 80 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 1: Parameter Tuning of Random Forest
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