
State-Space Reduction in Deep Q-Networks

Michael Ge∗ Richard Ouyang†

https://github.com/hahakumquat/stat234-project

April 24, 2018

Abstract

Deep convolutional neural networks have become a popular approach to estimating Q-value
functions in reinforcement learning problems. These deep Q-networks take in entire images as
network inputs, often resulting in large state spaces and long learning times. In this paper,
we explore the use of principal component analysis to reduce the state space of image inputs
for small network sizes. After testing multiple network configurations, we determine that a
reduction in uninformative state features through PCA helps improve the performance of deep
reinforcement learning, particularly for small neural network architectures.

∗michaelge@college.harvard.edu
†rouyang@college.harvard.edu

1

https://github.com/hahakumquat/stat234-project
michaelge@college.harvard.edu
rouyang@college.harvard.edu

STAT 234 Michael Ge, Richard Ouyang

Contents

1 Introduction 3

2 Background 3
2.1 MDP Overview . 3
2.2 Deep Q-Networks . 3
2.3 Principal Component Analysis . 4
2.4 OpenAI Gym . 4
2.5 PyTorch . 5

3 Methods 5
3.1 Initial Setup . 5
3.2 Image Preprocessing . 5
3.3 Model Structures . 5
3.4 Hyperparameters . 7
3.5 Implementation Details . 9

4 Results 9
4.1 Random Policy . 10
4.2 Hyperparameter Tuning Results . 10

4.2.1 First Grid Search (10,000 Iterations) . 10
4.2.2 Second Grid Search (50,000 Iterations) . 12
4.2.3 Third Grid Search (100,000 Iterations) . 13

4.3 PCA Networks . 15
4.3.1 Testing Layer Sizes . 18
4.3.2 Further Testing . 19

5 Discussion 19

6 Conclusion 22
6.1 Further Directions . 23

A Setup Instructions 25

2

STAT 234 Michael Ge, Richard Ouyang

1 Introduction

Current methods of Q-learning with deep neural
networks are inhibited by the large state space in-
herent in processing images. The state-of-the-art
methods used in recent papers [5, 6, 9] require
often infeasible amounts of computational power,
time, and data. Although convolutional neural
networks theoretically reduce the learning time
by restricting the size of the network and account-
ing for structural information in the data, it is
still difficult to learn a good policy in a time- and
data-efficient manner. We experiment with re-
ducing the state space dimensionality required by
deep Q-networks (DQNs) by applying principal
component analysis (PCA) to improve learned
policies and training times on a variety of Open-
AI games. Although state-space reduction has
previously been studied in reinforcement learning
[4], use of PCA in reducing state spaces, particu-
larly for neural networks, has not previously been
considered.

In addition, we provide an extensible and
easy-to-use software framework to test various
types of agents and Q-networks, even for games
not tested in this paper (such as Atari games).

2 Background

2.1 MDP Overview

We will briefly describe the general Markov Deci-
sion Process (MDP) framework. Define an MDP
to be a tuple consisting of the following elements:

• S, the set of states. In our usage, each
state s ∈ S is a transformation of the game
screens, which are matrices of pixel values.

• A, the set of actions. The available ac-
tions a ∈ A depend on the setting of the
game. In the problems of interest, we con-
sider games with discrete, relatively simple
action spaces.

• r : S × A → R, the reward function. A
reward rt(st, at) is given to the agent after
an action at is taken at state st. The reward
is often a complex function. If we knew

the reward function, we would easily know
which action to take at any state st and
timestep t.

• p : S ×A×S → R, the transition probabili-
ties. After taking action a, the agent moves
from state st to state st+1 with probability
p(st+1|st, at). In our games, transitions are
deterministic, so probabilities are either 0
or 1.

• γ ∈ [0, 1], the discount factor. γ discounts
future rewards at a constant, compounded
rate.

In reinforcement learning, we seek to learn
a policy π : S → A that maximizes the
expected discounted sum of future rewards
at a given state:

Rt = E

[∞∑
i=t

γi−tri|st−1

]

We define the Q-function under a policy π
as the expected discounted sum of future
rewards given a state and desired action:

Qπ(st, at) = E [Rt|st−1, at−1]

The optimal Q-function has been proven to
satisfy the Bellman equation:

Q?(s, a) = r(s, a) + γmax
a′∈A

Q?(s′, a′)

2.2 Deep Q-Networks

We now briefly discuss the application of deep
neural networks to reinforcement learning. The
most common use of deep neural networks is to
model the Q-function. These deep Q-networks
(DQNs) take in a transformed image input s,
passes it through multiple layers, and returns a
vector consisting of the estimated Q(s, a) for all
available actions a ∈ A.

Current state-of-the-art models [5, 6] use deep
convolutional neural networks (CNNs) as models
for the Q-function; these DQNs capitalize on the
structure of image data – for example, correla-
tions between nearby pixels – to make Q esti-
mates. Unfortunately, DQNs typically require a

3

STAT 234 Michael Ge, Richard Ouyang

large number of parameters, thus consuming large
amounts of computational resources, in terms of
both time and space. In our application, due to
computational constraints, we restrict our net-
work architectures to contain about 7000 param-
eters and briefly explore larger parameter spaces
toward the end of the paper. More information
about the structure of CNNs is available in Fig-
ure 1.

Double DQNs (DDQNs) [9] are very similar
to regular DQNs. However, instead of using the
same network to obtain the target value for mini-
batch updates as in a regular DQN, a DDQN
randomly selects one of two networks to update
and uses the other network to obtain the target
value.

2.3 Principal Component Analysis

Principal component analysis (PCA) is a dimen-
sionality reduction technique that orthogonally
projects the original features into a smaller set
of features. PCA chooses the axes with the most
variance to construct these principal components.
Each of the resulting principal components is un-
correlated with and orthogonal to all the other
components. In interpreting images, PCA keeps
transformations of the most variable pixels, elim-
inating the information contained in pixels with
very little variance.

We briefly describe how PCA works. Consider
a setting where we have n state feature vectors
x ∈ Rm. We construct a feature covariance ma-
trix S as the following:

n∑
i=1

xix
>
i = X>X = S

We then consider the d largest eigenvalues
of S. It has been shown that the corresponding
eigenvectors of these eigenvalues encompass the
maximum amount of variance in the dataset in
the subspace Rd. We then construct a d × m
projection matrix U:

U = (u1, . . . ,ud)
>

For each x, we can then compute the trans-
formed feature vector z = Ux. These can also

be interpreted as the reconstruction coefficients.
To reconstruct a simplified version of the orig-

inal feature vector, we compute:

x̂ = U>z

In our usage, we transform our input images
into a feature vector of pixels before performing
PCA.

2.4 OpenAI Gym

OpenAI Gym [2] offers a set of many standard
games on which to test reinforcement learning
algorithms. We tested our algorithms, which
learn on pixel images, on the following games.
See Figure 2 for sample images of each game.

CartPole-v0 CartPole is the classic reinforce-
ment learning environment. At every time
step, the agent receives a reward of 1 and
chooses to push the cart either right or left.
The game ends when the pole falls to an
angle greater than 15 degrees from vertical
or when the cart moves off the screen.

Acrobot-v1 Acrobot is a reinforcement learn-
ing game consisting of a double pendulum.
The agent can only apply force to the con-
necting joint (left, right, or no movement)
and must swing the pendulum so that the
tip of the pendulum reaches a certain height.
The agent receives a reward of −1 for every
time step the goal is not reached.

MountainCar-v0 MountainCar is a reinforce-
ment learning game in which the agent tries
to drive a car up a hill. The car is not strong
enough to climb the hill itself and thus must
learn to use gravity to achieve the neces-
sary speed. At every time step, the three
movements available are accelerating to the
right, accelerating to the left, and doing
nothing. The agent receives a reward of −1
for every time step the goal is not reached.

4

https://gym.openai.com/envs/CartPole-v0/
https://gym.openai.com/envs/Acrobot-v1/
https://gym.openai.com/envs/MountainCar-v0/

STAT 234 Michael Ge, Richard Ouyang

Figure 1: A visualization of the network structure of a convolutional neural network. The input is
the image, which is convolved through several layers, each of which contains several filters. The
result is then shrunk through a max pooling layer and passed through a fully connected linear layer
before being output as Q-values for each action in the action space.

2.5 PyTorch

PyTorch [7] is a Python framework for construct-
ing neural network architectures. The language
is relatively new and has little online support,
so learning the language was a significant part
of the project goal. Although PyTorch is still
in its early stages of development, it has several
advantages compared to other neural network
libraries such as TensorFlow and Keras. Namely,
improvements include a clean extension of the
common Python package NumPy, deep integration
with Python, and efficient memory usage.

3 Methods

3.1 Initial Setup

We replicated the original deep Q-network papers
[5, 6] in Python, using PyTorch [7] for the neural
network architecture and OpenAI Gym [2] to test
and compare our algorithms on different games.

There are quite a few steps to get started to
replicate our procedure, including changing some
of the source code in OpenAI Gym. For the sake
of brevity, these instructions are included in Ap-
pendix A. To run our experiments, we used a lim-
ited partition of an Odyssey research computing
cluster to run a portion of our computationally
intensive jobs.

3.2 Image Preprocessing

In this project, our goal was to learn the optimal
policy for the games without using parametric
data – for example, the pole angle in CartPole.
Instead, we focused more on image processing
rather than using the state information given by
the Gym environment.

At each time step, we obtained the RGB
(color) mapping of the game screen, resized the
image to 80× 80 pixels (rectangular images were
squashed into a square), and converted the im-
age to grayscale. We then took the difference
between the current timestep’s image and the
last timestep’s image as the state to input into
our DQN.

3.3 Model Structures

In our experiments, we used four different types
of models, each of which includes the original
(prefixed with “DQ”) and double (prefixed with
“DDQ”) network variants:

(D)DQCNN The original model [5, 6] and vari-
ants [9]. These models convolve images
using no extra state-space reduction tech-
niques like PCA. This original, grayscale
model is also referred to as the (D)DQN-GS

5

STAT 234 Michael Ge, Richard Ouyang

(a) Sample original image of the
CartPole game screen.

(b) Sample original image of the
Acrobot game screen.

(c) Sample original image of the
MountainCar game screen.

(d) Sample processed image of the
CartPole game screen.

(e) Sample processed image of the
Acrobot game screen.

(f) Sample processed image of the
MountainCar game screen.

Figure 2: Original and processed images from the three games discussed in this paper. The processed
images were created by grayscaling the original images and resizing from 600× 400 pixels to 80× 80
pixels. The resulting feature space is then R6400.

model. We use these two terms interchange-
ably.

(D)DQN-PCA These models use a database of
1000 states, generated from a random pol-
icy, as training data for PCA and project
the pixel features of new states onto the
subspace that captures at least 99% of the
variance. The result for each state is a
one-dimensional vector with varying lengths
based on the game (100 to 500 features).
This vector is passed into a feed-forward
(not convolutional) deep neural network
with varying numbers of layers and nodes
to predict the Q-value.

(D)DQCNN-PCA These models also perform
PCA; however, the (D)DQCNN-PCA mod-

els then invert the PCA transformation,
converting each transformed image back to
its original space. The result is a simplified
80× 80 image, which is then input into a
model with the same network structure as
the original (D)DQN.

(D)DQCNN-PCA-Mini Out of curiosity, we
included one additional model type, which
takes the one-dimensional vector obtained
from the PCA transformation and reshapes
it into a square (zero padding if necessary).
We then convolved the resulting “image”
through a smaller neural network to predict
the Q-value for each state. Although PCA
strips correlation between nearby pixels,
we were interested in investigating whether

6

STAT 234 Michael Ge, Richard Ouyang

the reduced dimensionality preserved some
structure between nearby values.

For the (D)DQCNN and (D)DQCNN-PCA
models, we kept our network structure similar
to [5] and [6] but reduced the parameter size by
using three hidden layers in each network. These
models take in an 80× 80 grayscale image. Each
hidden layer in the network convolves the previ-
ous layer’s output into multiple filters, followed
by a batch normalization and a leaky ReLU with
α = 0.001 to prevent dead nodes. The first layer
convolves 8 8× 8 filters with stride 4; the second
layer convolves 16 4× 4 filters with stride 2; the
final hidden layer convolves 16 4× 4 filters, this
time with stride 1. A max pooling with kernel
size 2 is then applied to reduce the dimensionality
of the output. The final layer is fully connected
and maps linearly to the number of actions avail-
able. For instance, since CartPole contains two
actions at any time, the output of the neural
network contains two nodes. This structure saves
time when forwarding through the network, since
a single forward pass for a given state s gives
Q̂network(s, a) for all a ∈ A. The images can be
found in Figure 3.

To ensure that the models are relatively com-
parable, we kept the number of parameters for
each model as close as possible at around 7,000
parameters. For the (D)DQN-PCA model, we
tested a variety of network architectures, varying
the number of layers as well as the number of
nodes in each layer.

For the (D)DQCNN-PCA-Mini model, we
kept the rough network structure the same as our
original models while accounting for the reduced
image size. However, to account for the smaller
image size, we reduced the kernel size to 4 and
the stride to 1 for all layers.

3.4 Hyperparameters

We tested many configurations of hyperparame-
ters, varying the following:

Model One of the Q-function models mentioned
in Section 3.3.

Frame skip The number of time steps for which
the same action is repeated. To speed up
learning, we used this method described
in [5, 6]. When an action is selected, that
action is repeated for the next k frames,
since selecting an action and training takes
much more time than rendering an addi-
tional step of the game. We chose k = 3
since k = 4, which was suggested in [5, 6],
empirically performed worse in CartPole.

Update frequency The number of distinct ac-
tion selections between each minibatch up-
date. This value is typically set to 4. This
technique speeds up the training even fur-
ther, since rendering the environment is far
less costly than forwarding through the net-
work. This technique has been extensively
used in other papers [5, 6, 9].

Number of training steps The length of time
the model should be trained, expressed in
terms of the number of minibatch training
steps. While state-of-the-art research uses
up to 10 million frames, our resources re-
strict us to values between 10 thousand and
100 thousand.

Replay memory size The maximum number
of transitions – each of which is a (s, a, r, s′)
tuple – stored in the replay memory. The
replay memory is used to reduce correlation
between transitions used in each minibatch
update [5, 6].

Target update If the model uses a target net-
work [6], this represents the number of
trains between each target network update.
Each update involves setting the target net-
work parameters to the main network pa-
rameters.

Learning rate The (initial) learning rate used
by the optimizer. A higher learning rate
results in a model that learns faster but
may diverge.

Learning rate annealing Whether the learn-
ing rate is annealed to a smaller value.
Learning rate annealing helps decrease the

7

STAT 234 Michael Ge, Richard Ouyang

(a) Sample PCA-transformed image
of the CartPole game screen for the
DQCNN-PCA model.

(b) Sample PCA-transformed image
of the Acrobot game screen for the
DQCNN-PCA model.

(c) Sample PCA-transformed image
of the MountainCar game screen for
the DQCNN-PCA model.

(d) Sample PCA-transformed image
of the CartPole game screen for the
DQCNN-PCA-Mini model.

(e) Sample PCA-transformed image
of the Acrobot game screen for the
DQCNN-PCA-Mini model.

(f) Sample PCA-transformed image
of the MountainCar game screen for
the DQCNN-PCA-Mini model.

Figure 3: PCA images from the three games discussed in this paper. The PCA images were created
by grayscaling the original images, using the features that capture 99% of the variance, and either
inverting the transformation or not. The resulting feature space depends on the PCA reduction
amount. Note that the most important pixels (near the game object in the first row, and near the
top in the second row) are much more variable in color than the less important pixels, which tend
to be a relatively uniform gray.

likelihood of policy divergence. The learn-
ing rate anneals according to the equation

αt = αinitial max

(
exp

(
− t

λα

)
,
0.0005

αinitial

)
,

where t is the number of minibatch training
updates that have already occurred, and λ
is the decay rate, so that the learning rate
anneals exponentially from its initial value
to a final value of 0.0005.

Batch size The minibatch size, or the number

of transitions used in each training update.
The two values tested were 32 and 128.

Loss function The loss function used in the
model. The Huber loss (defined as the `2
norm for losses greater than 1 and the `1
norm otherwise) and the mean squared er-
ror (MSE) loss were the two loss functions
considered.

Regularization The weight decay in the opti-
mizer. This value typically ranges from 0
to 1 and is used to prevent overfitting in

8

STAT 234 Michael Ge, Richard Ouyang

our networks.

Agent action selection We used an ε-greedy
agent, annealing ε from εinitial = 1 to εfinal =
0.1 according to the equation

εt = εfinal + (εinitial − εfinal) exp

(
− t

λε

)
,

where t is the number of times the agent
has already selected an action, and λ is the
decay rate.

Network Architecture Toward the end of our
experimentation, we had the time to test
several different network configurations for
the (D)DQN-PCA model. Unfortunately,
due to the computational demands of per-
forming over images, it was intractable to
test larger node structures.

3.5 Implementation Details

The code is structured such that the user can
pass a model, agent, game, and a large selection
of hyperparameters into main.py. During the
script execution, statistics are logged for later
analysis.

Within our utils/ folder, we implemented
several scripts to aid in the data analysis process,
some of which we will briefly discuss here.

• Logger.py is a general logging utility for
storing statistics in files.

• PCA.py contains a PCA class whose objects
can train on inputs of states, return the
transformed features, and invert already-
transformed features back into the original
image space.

• ReplayMemory.py contains a class whose
objects store and quickly sample transitions
for minibatch updates.

• get_notes_and_stats.py parses our raw
data into an easy-to-read format, providing
summary statistics, hyperparameters, and
metadata about each job.

• plot_data.py plots raw data as well as
running means over episodes and training
updates.

• save_states.py runs a random policy for
each game, saving a large set of states on
which PCA can later be performed.

Our automate_run folder contains the follow-
ing bash scripts for running jobs on the computing
cluster:

• gen_slurms.sh and search_nets.sh iter-
ate over a given hyperparameter space and
submit batch jobs for each hyperparameter
combination in parallel.

• view_plots.sh is a utility that allows the
user to view the rewards of each game,
providing a preliminary categorization of
model performance.

Although we did have access to a computing
cluster, the access was limited and we did not
have access to GPUs, which significantly speed
up learning for neural networks. We also had
limited time to run our experiments, preventing
us from running the 10 million frames per game
prescribed in the literature [5, 6]. This was the
motivation for our efforts to improve learning by
reducing the state space.

4 Results

The full set of raw data and metadata are avail-
able in our GitHub repository1 (warning: approx-
imately 600 MB). For all our experiments, our
primary measure of policy performance was the
mean reward over the second half of the episodes,
with a rolling mean over the previous 5% of the
total number of episodes providing a similar but
smoother representation of model performance.
Additionally, all other summary statistics for each
run are also taken over the second half of the
episodes, after the algorithm has had time to
learn the game and converge. This prevents the

1https://github.com/hahakumquat/

stat234-project/tree/master/data

9

https://github.com/hahakumquat/stat234-project/tree/master/data
https://github.com/hahakumquat/stat234-project/tree/master/data

STAT 234 Michael Ge, Richard Ouyang

learning process from affecting measurements of
the final learned policy.

Note that the plots of our data are graphed
across all of the episodes completed over a con-
stant number of training iterations rather than
over a constant number of episodes. Therefore,
the number of episodes varies depending on the
durations of each game. That is, for longer game
durations, we have fewer episodes. This difference
occurs because we seek to keep training time con-
stant between models. For instance, if we were to
train models for a constant number of episodes, a
poor MountainCar model that averages episode
durations around 5000 (and thus per-episode re-
wards around -5000) would be able to use approx-
imately ten times more training time (measured
in clock time) than a better MountainCar model
that averages episode durations around 500 (and
thus per-episode rewards around -500). On the
other hand, by training models for a constant
number of training steps, we ensure that training
time as well as the number of minibatch updates
is relatively constant between all models. This
strategy is consistent with the deep Q-learning lit-
erature [5, 6, 9], which typically keeps the number
of frames played constant.

For the sake of comparing plots within games,
the y-axes for the reward graphs are standardized,
even if episode rewards are outside the axis limits.
In particular, the y-axis is clipped to be between 0
and 200 for CartPole, −2000 and 0 for Acrobot,
and −5000 and 0 for MountainCar. We do this
because unclipped axes often create difficulties
in detecting patterns in regions with low reward
variance.

4.1 Random Policy

As a baseline, we ran a random policy on each
game, with results in Figures 4, 5, and 6. The av-
erage rewards and durations for the three games
are available in Table 1. With this initial goal in
mind, we proceeded to test different model archi-
tectures and hyperparameter settings to achieve
good empirical results over all three games.

4.2 Hyperparameter Tuning Results

In our hyperparameter tuning, we decided to
keep the frame skip, update frequency, replay
memory size, and agent action selection hyperpa-
rameters constant for testing, since grid search
sizes increase exponentially in the number of pa-
rameters, and varying these settings would vastly
increase simulation time and space consumption.

4.2.1 First Grid Search (10,000 Iterations)

In order to establish a solid set of hyperparam-
eters to which PCA variants of DQNs could be
compared, we began our experiments with an
initial grid search over the hyperparameters of
interest for 10,000 training steps to eliminate
poorly performing hyperparameter settings. Ta-
ble 2 contains the results of the top fifteen models
for each game ordered by performance.

From these results, we already find that our
best hyperparameter configurations beat the ran-
dom baseline. MountainCar was rather difficult
to learn, as the final policy seems to depend
on the random initialization. With sub-optimal
hyperparameters, the episodes under a poorly
learned policy can extend to tens of thousands
of time steps, far more than a random policy.
This particular vulnerability to divergence likely
occurs because all transitions entered into the
replay memory have r = −1, creating difficul-
ties in learning. The average episode in Cart-

Pole roughly doubles the duration of the random
policy, though the performance has significantly
high variance in all models, reaching maxima of
up to 200 time steps. Finally, Acrobot seems to
have been learned quite quickly, reaching optimal
performance within the 10,000 training steps.

Here, we observe consistently stronger per-
formance by DDQN-GSs relative to DQN-GSs
and by using a Huber loss function rather than
an MSE loss. Other optimizers, such as Adam,
failed to learn in pre-testing, so we used the RM-
SProp optimizer (as suggested by [5]) throughout
our experiments. Weight decay yielded mixed re-
sults, likely due to the fact that we only allowed
the models to run for 10,000 training steps. Ad-
ditionally, the effectiveness of the learning rate

10

STAT 234 Michael Ge, Richard Ouyang

0 200 400 600 800 1000
episodes

0

25

50

75

100

125

150

175

200

re
w

ar
d

CartPole NoTraining Random rewards

raw
rolling mean over 50

(a) Rewards by episode, as well as a rolling mean, for
a random policy in the CartPole game.

0 200 400 600 800 1000
episodes

0

25

50

75

100

125

150

175

200

du
ra

tio
n

CartPole NoTraining Random durations

raw
rolling mean over 50

(b) Durations by episode, as well as a rolling mean, for
a random policy in the CartPole game.

Figure 4: Baseline results from the CartPole game from OpenAI Gym under a random policy.

0 200 400 600 800 1000
episodes

2000

1750

1500

1250

1000

750

500

250

0

re
w

ar
d

Acrobot NoTraining Random rewards

raw
rolling mean over 50

(a) Rewards by episode, as well as a rolling mean, for
a random policy in the Acrobot game.

0 200 400 600 800 1000
episodes

0

250

500

750

1000

1250

1500

1750

2000
du

ra
tio

n

Acrobot NoTraining Random durations

raw
rolling mean over 50

(b) Durations by episode, as well as a rolling mean, for
a random policy in the Acrobot game.

Figure 5: Baseline results from the Acrobot game from OpenAI Gym under a random policy.

Game Average Duration Average Reward

CartPole-v0 18.441 18.441
Acrobot-v1 599.73 -598.73

MountainCar-v0 2717.77 -2717.77

Table 1: Average rewards and durations under a random policy for the three games.

parameters varied significantly with the game;
for example, CartPole learns better with a sig-
nificantly higher learning rate than the other two
games. We also saw that annealing the learning
rate slightly improved the overall performance
of the algorithms, so we decided to keep the an-

nealing for subsequent experiments. In theory, a
learning rate annealing should improve the stabil-
ity of the model after the model has had time to
learn a strong policy. Moreover, not displayed in
the data is the surprising fact that DQN-GSs with
an enabled target update performed significantly

11

STAT 234 Michael Ge, Richard Ouyang

0 200 400 600 800 1000
episodes

5000

4000

3000

2000

1000

0

re
w

ar
d

MountainCar NoTraining Random rewards

raw
rolling mean over 50

(a) Rewards by episode, as well as a rolling mean, for
a random policy in the MountainCar game.

0 200 400 600 800 1000
episodes

0

1000

2000

3000

4000

5000

du
ra

tio
n

MountainCar NoTraining Random durations

raw
rolling mean over 50

(b) Durations by episode, as well as a rolling mean, for
a random policy in the MountainCar game.

Figure 6: Baseline results from the MountainCar game from OpenAI Gym under a random policy.

worse than DQN-GSs without a target update
in that they failed to reach any convergence at
all, so we also decided to remove target update
functionality for future experiments. With these
observations in mind, we proceeded to test an-
other batch of models using a larger number of
training steps.

4.2.2 Second Grid Search (50,000 Itera-
tions)

Setting the optimizer, loss function, and target
update to RMSProp, Huber loss, and False, re-
spectively, we performed a second grid search
over 50,000 training iterations to tune the learn-
ing rate and weight decay. The results can be
found in Table 3.

MountainCar and Acrobot continued to per-
form well with more training time for the best
models, though we began to see evidence of high
variance in performance between models for these
games. Both had the worst models getting av-
erage scores near the level of randomness. In
these games, episodes are not completed until
the agent succeeds at reaching above a certain
height or climbing up the mountain. As a result,
if an agent learns a poor policy early on, the
agent could spend all of its training iterations re-
ceiving −1 reward with no positive feedback. To
help mitigate this issue, we capped the number

of training iterations per episode to 20,000 with
the intent to expose the agent to more positive
states and to speed up learning time. If an agent
reaches a duration of 20,000, we already know
that the agent does a poor job of learning a good
policy and can afford to ignore the model, since
in our random policy experiments, episode dura-
tions never surpassed 16,000 training steps and
rarely lasted more than 10,000 steps.

Again, we see that DDQN-GSs tend to out-
perform DQN-GSs. The learning rate, however,
is inconsistent from the first grid search. Here,
we find that overall, lower learning rates are pre-
ferred over higher ones for longer grid search
durations. This observation is reasonable, since
we expect that with a longer training duration,
the agent has more time to converge to a good
policy, whereas with only 10,000 iterations, the
model needs a higher learning rate to quickly
outdo random performance. As a result, we de-
cided to continue with even higher training times
with lower learning rates. Weight decay does
not appear to have a significant impact on the
performance of the models, so we decided to take
the more conservative option of a regularization
coefficient of 0.1.

12

STAT 234 Michael Ge, Richard Ouyang

mean std game model target lr lr anneal loss function weight decay

-194.65 40.72 MountainCar-v0 DDQN GS N/A 0.0010 False Huber 0.100
-203.34 51.92 MountainCar-v0 DDQN GS N/A 0.0010 False Huber 0.001
-275.30 143.07 MountainCar-v0 DQN GS False 0.0010 False Huber 0.100
-401.52 174.12 MountainCar-v0 DDQN GS N/A 0.0010 False Huber 0.001
-432.88 184.60 MountainCar-v0 DDQN GS N/A 0.0010 False Huber 0.100
-447.00 188.12 MountainCar-v0 DQN GS False 0.0010 False Huber 0.001
-459.67 203.96 MountainCar-v0 DDQN GS N/A 0.0010 True Huber 0.001
-515.18 260.42 MountainCar-v0 DDQN GS N/A 0.0001 True Huber 0.100
-741.46 475.74 MountainCar-v0 DQN GS True 0.0010 False Huber 0.001
-747.50 485.40 MountainCar-v0 DQN GS True 0.0010 False MSE 0.100
-767.06 544.14 MountainCar-v0 DQN GS True 0.0010 False MSE 0.100
-779.10 593.02 MountainCar-v0 DQN GS True 0.0010 True MSE 0.100
-815.88 514.64 MountainCar-v0 DQN GS True 0.0010 False Huber 0.100
-819.31 400.22 MountainCar-v0 DDQN GS N/A 0.0001 True Huber 0.100
-830.99 585.96 MountainCar-v0 DQN GS True 0.0010 True MSE 0.100
45.09 20.87 CartPole-v0 DDQN GS N/A 0.0010 False Huber 0.100
43.74 18.85 CartPole-v0 DDQN GS N/A 0.0010 True Huber 0.100
42.95 20.65 CartPole-v0 DDQN GS N/A 0.0010 False Huber 0.100
41.33 20.06 CartPole-v0 DDQN GS N/A 0.0010 False Huber 0.001
41.02 17.93 CartPole-v0 DDQN GS N/A 0.0001 False MSE 0.100
38.56 20.58 CartPole-v0 DDQN GS N/A 0.0010 True Huber 0.001
36.85 19.40 CartPole-v0 DDQN GS N/A 0.0001 True Huber 0.001
35.95 20.28 CartPole-v0 DQN GS False 0.0001 True Huber 0.100
34.19 19.59 CartPole-v0 DDQN GS N/A 0.0010 False Huber 0.100
34.05 18.31 CartPole-v0 DDQN GS N/A 0.0001 False Huber 0.100
32.99 18.97 CartPole-v0 DDQN GS N/A 0.0010 True Huber 0.001
32.15 18.75 CartPole-v0 DQN GS False 0.0010 False Huber 0.001
31.80 18.42 CartPole-v0 DDQN GS N/A 0.0010 True Huber 0.001
31.65 18.50 CartPole-v0 DDQN GS N/A 0.0010 True Huber 0.100
31.13 17.34 CartPole-v0 DQN GS False 0.0001 False Huber 0.100

-135.35 40.45 Acrobot-v1 DDQN GS N/A 0.0010 False Huber 0.001
-139.54 48.99 Acrobot-v1 DDQN GS N/A 0.0001 True Huber 0.100
-139.90 68.38 Acrobot-v1 DDQN GS N/A 0.0010 False MSE 0.100
-140.98 47.55 Acrobot-v1 DDQN GS N/A 0.0001 True Huber 0.100
-141.87 47.09 Acrobot-v1 DDQN GS N/A 0.0010 False Huber 0.001
-144.14 49.84 Acrobot-v1 DDQN GS N/A 0.0010 True Huber 0.001
-145.35 55.77 Acrobot-v1 DDQN GS N/A 0.0010 False MSE 0.001
-145.66 56.42 Acrobot-v1 DDQN GS N/A 0.0010 True Huber 0.100
-145.66 67.97 Acrobot-v1 DDQN GS N/A 0.0010 False MSE 0.001
-146.53 51.54 Acrobot-v1 DDQN GS N/A 0.0001 True Huber 0.100
-147.02 57.80 Acrobot-v1 DDQN GS N/A 0.0010 False Huber 0.100
-147.31 47.77 Acrobot-v1 DDQN GS N/A 0.0010 False MSE 0.100
-149.56 52.38 Acrobot-v1 DDQN GS N/A 0.0010 True Huber 0.100
-150.46 48.16 Acrobot-v1 DDQN GS N/A 0.0001 True Huber 0.001
-150.77 90.89 Acrobot-v1 DDQN GS N/A 0.0010 False MSE 0.100

Table 2: Top fifteen parameter-tuned mean rewards per game for our first grid search. Each run used
either the DDQN-GS or DQN-GS model and lasted for 10,000 training steps. Note that DDQNs do
not have a target update option, so their value in the “target” column is N/A.

4.2.3 Third Grid Search (100,000 Itera-
tions)

By this point, we established that DDQNs tended
to outperform DQNs, so we then explored hy-

perparameter configurations that yielded good
performance over 100,000 iterations. We then
performed a grid search, varying the batch size
and learning rate. The results can be found in

13

STAT 234 Michael Ge, Richard Ouyang

mean std max min game model learning rate weight decay

-157.31 43.98 -89.0 -367.0 MountainCar-v0 DDQN GS 0.001 0.1
-174.80 42.88 -93.0 -367.0 MountainCar-v0 DDQN GS 0.001 1.0
-183.64 54.77 -86.0 -531.0 MountainCar-v0 DQN GS 0.010 0.1
-198.51 72.57 -87.0 -692.0 MountainCar-v0 DQN GS 0.001 0.1
-316.64 99.96 -157.0 -826.0 MountainCar-v0 DDQN GS 0.001 1.0
-482.91 296.52 -122.0 -2628.0 MountainCar-v0 DDQN GS 0.001 0.5
-720.04 335.26 -204.0 -3496.0 MountainCar-v0 DDQN GS 0.010 0.5
-966.51 707.24 -261.0 -8113.0 MountainCar-v0 DDQN GS 0.010 0.1

-1189.10 895.58 -116.0 -5973.0 MountainCar-v0 DQN GS 0.001 0.1
-1461.33 1102.82 -187.0 -8273.0 MountainCar-v0 DQN GS 0.010 0.1
-1540.45 1345.71 -144.0 -9615.0 MountainCar-v0 DQN GS 0.001 0.5
-1692.36 1668.82 -302.0 -15960.0 MountainCar-v0 DQN GS 0.010 0.5
-1799.61 1188.13 -152.0 -6791.0 MountainCar-v0 DQN GS 0.001 1.0
-2137.92 1990.21 -358.0 -14589.0 MountainCar-v0 DDQN GS 0.010 0.5
-2538.47 2398.58 -124.0 -12525.0 MountainCar-v0 DQN GS 0.010 0.5

57.91 28.34 277.0 8.0 CartPole-v0 DDQN GS 0.010 0.5
53.18 26.40 227.0 8.0 CartPole-v0 DDQN GS 0.010 0.1
53.10 25.76 239.0 8.0 CartPole-v0 DDQN GS 0.010 1.0
49.23 20.28 178.0 8.0 CartPole-v0 DQN GS 0.010 0.5
47.78 25.22 208.0 8.0 CartPole-v0 DDQN GS 0.010 0.5
47.22 25.20 214.0 8.0 CartPole-v0 DDQN GS 0.010 1.0
46.79 23.67 212.0 8.0 CartPole-v0 DDQN GS 0.001 0.1
44.75 22.90 216.0 8.0 CartPole-v0 DDQN GS 0.010 0.1
44.01 20.00 163.0 8.0 CartPole-v0 DQN GS 0.010 0.5
39.42 23.55 196.0 8.0 CartPole-v0 DDQN GS 0.001 1.0
38.67 20.16 186.0 8.0 CartPole-v0 DDQN GS 0.001 1.0
35.83 20.68 198.0 8.0 CartPole-v0 DQN GS 0.010 0.1
33.11 19.27 152.0 8.0 CartPole-v0 DQN GS 0.001 0.1
31.10 20.71 166.0 8.0 CartPole-v0 DQN GS 0.010 0.1
30.34 21.35 175.0 8.0 CartPole-v0 DQN GS 0.001 0.1

-116.36 29.32 -63.0 -269.0 Acrobot-v1 DDQN GS 0.010 1.0
-130.94 45.62 -61.0 -608.0 Acrobot-v1 DDQN GS 0.010 0.1
-142.00 56.06 -64.0 -618.0 Acrobot-v1 DDQN GS 0.001 1.0
-159.43 78.84 -69.0 -723.0 Acrobot-v1 DDQN GS 0.001 0.5
-167.35 545.15 -64.0 -20001.0 Acrobot-v1 DDQN GS 0.001 0.5
-168.79 76.15 -72.0 -821.0 Acrobot-v1 DQN GS 0.001 0.1
-172.22 113.09 -67.0 -1704.0 Acrobot-v1 DQN GS 0.001 0.1
-181.91 99.73 -64.0 -1271.0 Acrobot-v1 DDQN GS 0.010 0.5
-193.88 184.78 -70.0 -3561.0 Acrobot-v1 DDQN GS 0.001 0.1
-206.12 137.57 -67.0 -3076.0 Acrobot-v1 DQN GS 0.010 0.1
-210.29 115.62 -75.0 -1161.0 Acrobot-v1 DDQN GS 0.001 0.1
-222.76 136.54 -67.0 -1443.0 Acrobot-v1 DQN GS 0.010 0.1
-239.53 340.89 -67.0 -8865.0 Acrobot-v1 DDQN GS 0.001 1.0
-327.39 270.80 -67.0 -4601.0 Acrobot-v1 DDQN GS 0.010 0.5
-469.47 1114.24 -102.0 -19928.0 Acrobot-v1 DDQN GS 0.010 1.0

Table 3: Top fifteen parameter-tuned mean rewards per game for our second grid search. All
experiments used a Huber loss, learning rate annealing, no target update, and the RMSProp
optimizer for 50,000 training steps.

Table 4.
The data here indicate mixed results. Moun-

tainCar tends to do better with larger batch
sizes, while Acrobot and CartPole do better

with a smaller batch size. The learning rates
differed from game to game as well. With no
significant trends in performance, we opted to
use a batch size of 128 to increase learning speed

14

STAT 234 Michael Ge, Richard Ouyang

mean std max min game batch size lr

-220.09 56.98 -109.0 -750.0 MountainCar-v0 128 0.010
-223.76 59.65 -115.0 -731.0 MountainCar-v0 128 0.001
-229.75 65.07 -111.0 -714.0 MountainCar-v0 128 0.005
-257.19 111.89 -92.0 -1510.0 MountainCar-v0 32 0.001
-342.39 128.86 -159.0 -1044.0 MountainCar-v0 32 0.005
-882.25 601.97 -149.0 -4762.0 MountainCar-v0 32 0.010

-8222.00 1780.00 -6442.0 -10002.0 MountainCar-v0 32 0.001
-10002.00 0.00 -10002.0 -10002.0 MountainCar-v0 128 0.001

51.25 27.66 271.0 8.0 CartPole-v0 32 0.010
50.47 25.31 250.0 8.0 CartPole-v0 128 0.001
49.22 24.09 230.0 8.0 CartPole-v0 32 0.001
46.82 24.16 247.0 8.0 CartPole-v0 32 0.005
34.33 18.06 107.0 8.0 CartPole-v0 128 0.001
10.19 2.89 38.0 8.0 CartPole-v0 32 0.001
9.86 2.21 75.0 8.0 CartPole-v0 128 0.005
9.72 1.82 46.0 8.0 CartPole-v0 128 0.010

-116.24 34.05 -63.0 -436.0 Acrobot-v1 32 0.005
-163.57 67.57 -64.0 -987.0 Acrobot-v1 32 0.001
-172.75 66.27 -70.0 -658.0 Acrobot-v1 32 0.010
-227.93 93.22 -103.0 -516.0 Acrobot-v1 128 0.001
-408.08 262.05 -137.0 -1184.0 Acrobot-v1 32 0.001
-453.32 259.88 -97.0 -2454.0 Acrobot-v1 128 0.010
-546.15 631.72 -69.0 -10002.0 Acrobot-v1 128 0.001
-721.18 430.19 -127.0 -3440.0 Acrobot-v1 128 0.005

Table 4: Complete results for our third grid search, sorted by mean reward. All experiments used
the DDQN-GS model with a Huber loss function, learning rate annealing, and a 0.1 weight decay
for 100,000 training iterations.

and a learning rate of 0.001 to prevent divergence.
Our final hyperparameters, used in the rest of
the paper, are available in Table 5.

4.3 PCA Networks

The hyperparameter comparison results general-
ized quite well to other models, so we continued
to use these parameters for all models in the re-
maining experiments. With a strong DDQN-GS
model selected as our new baseline, we then began
to test the performance of PCA-based models.
With MountainCar and Acrobot being solved
problems for several of our neural networks but
CartPole failing to ever reach particularly large
scores, we then focused our efforts on improving
CartPole. We then ran a set of experiments for
100,000 iterations over all of our models. See
Figures 7, 8, and 9 for a graphical comparison
between the double versions of all of the networks
of interest. Table 6 contains the full numerical
set of results.

First, we note that the (D)DQN-PCA model,
which does not convolve over an image repre-
sentation, does relatively poorly in all settings.
This result is surprising; despite the fact that
this model does not account for the structural
properties of adjacent pixels as a convolutional
neural network does, the model performs only
slightly better than random. This became a sign
that the neural network architecture selected for
these models were underfitting the data. For now,
we turn our attention to the convolutional PCA
versions of the models.

The DDQCNN-PCA model performed well
for CartPole and Acrobot, outperforming even
the convolutional models and generating some of
the best scores and most stable means we ever saw
in our experiments. One possible reason for the
superior performance is the fact that PCA sim-
plifies the images, thereby reducing noise and al-
lowing for more efficient learning. Unfortunately,
these results were not replicated in the Moun-

15

STAT 234 Michael Ge, Richard Ouyang

Hyperparameter Value

Model DDQN
Frame skip 3

Update frequency 4
Training updates 100000

Replay memory size 10000
Target update N/A
Learning rate 0.001

Learning rate annealing Yes
Batch size 128

Loss function Huber loss
Regularization 0.1

Table 5: The hyperparameters found by our grid search and used for the PCA variants of the
(D)DQN, in Section 4.3.

0 5000 10000 15000 20000 25000 30000
episodes

0

25

50

75

100

125

150

175

200

re
w

ar
d

CartPole DDQN GS EpsilonGreedy rewards

raw
rolling mean over 1482

(a) Rewards by episode from training the DDQN-GS
model on the CartPole game.

0 1000 2000 3000 4000 5000 6000
episodes

0

25

50

75

100

125

150

175

200

re
w

ar
d

CartPole DDQN PCA EpsilonGreedy rewards

raw
rolling mean over 287

(b) Rewards by episode from training the DDQN-PCA
model on the CartPole game.

0 2500 5000 7500 10000 12500 15000 17500
episodes

0

25

50

75

100

125

150

175

200

re
w

ar
d

CartPole DDQCNN PCA EpsilonGreedy rewards

raw
rolling mean over 897

(c) Rewards by episode from training the DDQCNN-
PCA model on the CartPole game.

0 5000 10000 15000 20000
episodes

0

25

50

75

100

125

150

175

200

re
w

ar
d

CartPole DDQCNN-PCA-Mini EpsilonGreedy rewards

raw
rolling mean over 1046

(d) Rewards by episode from training the DDQCNN-
PCA-Mini model on the CartPole game.

Figure 7: Rewards by episode for four DQN variants (including those using PCA) on the CartPole

game. All trials used the hyperparameters detailed in Figure 5.

16

STAT 234 Michael Ge, Richard Ouyang

0 500 1000 1500 2000 2500 3000 3500
episodes

2000

1750

1500

1250

1000

750

500

250

0

re
w

ar
d

Acrobot DDQN GS EpsilonGreedy rewards

raw
rolling mean over 171

(a) Rewards by episode from training the DDQN-GS
model on the Acrobot game.

0 50 100 150 200 250 300
episodes

2000

1750

1500

1250

1000

750

500

250

0

re
w

ar
d

Acrobot DDQN PCA EpsilonGreedy rewards

raw
rolling mean over 14

(b) Rewards by episode from training the DDQN-PCA
model on the Acrobot game.

0 2000 4000 6000 8000
episodes

2000

1750

1500

1250

1000

750

500

250

0

re
w

ar
d

Acrobot DDQCNN PCA EpsilonGreedy rewards

raw
rolling mean over 410

(c) Rewards by episode from training the DDQCNN-
PCA model on the Acrobot game.

0 500 1000 1500 2000 2500 3000 3500
episodes

2000

1750

1500

1250

1000

750

500

250

0

re
w

ar
d

Acrobot DDQCNN PCA Mini EpsilonGreedy rewards

raw
rolling mean over 167

(d) Rewards by episode from training the DDQCNN-
PCA-Mini model on the Acrobot game.

Figure 8: Rewards by episode for four DQN variants (including those using PCA) on the Acrobot

game. All trials used the hyperparameters detailed in Figure 5.

tainCar game, failing to beat even the random
baseline. It seems that MountainCar is sensitive
to weight initialization, causing unpredictable
fluctuations in its performance.

What is more surprising is the performance of
DDQCNN-PCA-Mini model, which was a strong
performer in the MountainCar setting. We had
no expectations that this model would do well.
After all, the PCA simply selects the most vari-
able features in the projected subspace and are
ad hoc formed into a square image over which
to convolve without maintaining the structural
integrity of the original image. It may be that the
projection yielded features in the reduced space
that had high correlation between one another

and thus high predictive power, which the DQN
was able to detect; another possibility is the fact
that the orthogonal projection preserved some
structural information. Otherwise, we have lit-
tle explanation for the model’s performance and
mention it only as a point of interest for future
work.

Despite some PCA variants being high per-
formers in each of the games, many of the re-
maining PCA models were unable to perform
above a random baseline, particularly those not
using convolutional neural networks. Upon closer
inspection of the reward graphs, we find that
several PCA models reached a strong optimum
around the middle of the training process but

17

STAT 234 Michael Ge, Richard Ouyang

0 500 1000 1500 2000 2500 3000
episodes

5000

4000

3000

2000

1000

0

re
w

ar
d

MountainCar DDQN GS EpsilonGreedy rewards

raw
rolling mean over 158

(a) Rewards by episode from training the DDQN-GS
model on the MountainCar game.

0 100 200 300 400
episodes

5000

4000

3000

2000

1000

0

re
w

ar
d

MountainCar DDQN PCA EpsilonGreedy rewards

raw
rolling mean over 21

(b) Rewards by episode from training the DDQN-PCA
model on the MountainCar game.

0 200 400 600 800
episodes

5000

4000

3000

2000

1000

0

re
w

ar
d

MountainCar DDQCNN PCA EpsilonGreedy rewards

raw
rolling mean over 44

(c) Rewards by episode from training the DDQCNN-
PCA model on the MountainCar game.

0 1000 2000 3000 4000
episodes

5000

4000

3000

2000

1000

0

re
w

ar
d

MountainCar DDQCNN PCA Mini EpsilonGreedy rewards

raw
rolling mean over 232

(d) Rewards by episode from training the DDQCNN-
PCA-Mini model on the MountainCar game.

Figure 9: Rewards by episode for four DQN variants (including those using PCA) on the MountainCar
game. All trials used the hyperparameters detailed in Figure 5.

ended up diverging over time. Overall, we find
that PCA is sensitive to divergence for bad pa-
rameter settings, but less so than the original
model; additionally, under the right use cases,
the right learning rate annealing, and ε decay,
PCA is a promising method to increase the per-
formance of a Q-network under short learning
time settings.

4.3.1 Testing Layer Sizes

Due to limited time and resources, one regret we
had was that we were unable to tune network
configurations throughout the process. However,
after seeing our initial set of results, we had suspi-

cions that the models were underfitting the prob-
lems of interest. Seeing that the (D)DQN-PCA
models performed surprisingly poorly, we decided
to test these models on a variety of more complex
feed-forward network architectures used in these
models. See Table 7 for the results from testing
several feed-forward deep neural network archi-
tectures for the DDQN-PCA model over 20,000
training iterations.

These findings show a significant increase in
the performance of both models, despite losing
the structural correlations between pixels. It
seems that our initial (D)DQN-PCA neural net-
work architecture was indeed underfitting the
images. By adding more weights, (initially 7,000

18

STAT 234 Michael Ge, Richard Ouyang

mean std max min game model

-193.61 66.17 -94.0 -816.0 MountainCar-v0 DQN GS
-210.73 69.85 -88.0 -981.0 MountainCar-v0 DDQCNN PCA Mini
-314.35 180.27 -123.0 -1936.0 MountainCar-v0 DDQN GS
-611.61 419.63 -91.0 -3554.0 MountainCar-v0 DQCNN PCA
-650.51 456.30 -110.0 -3208.0 MountainCar-v0 DQN PCA

-1309.16 1106.23 -182.0 -10002.0 MountainCar-v0 DDQCNN PCA
-1792.34 1358.56 -231.0 -9085.0 MountainCar-v0 DQCNN PCA Mini

67.93 36.91 314.0 8.0 CartPole-v0 DDQCNN PCA
65.26 34.13 350.0 8.0 CartPole-v0 DQCNN PCA
46.96 23.44 193.0 8.0 CartPole-v0 DQCNN PCA Mini
39.80 24.49 243.0 8.0 CartPole-v0 DDQN GS
29.12 18.95 153.0 8.0 CartPole-v0 DQN GS
23.99 15.83 142.0 8.0 CartPole-v0 DQN PCA
11.65 5.32 73.0 8.0 CartPole-v0 DDQCNN PCA Mini

-148.55 56.72 -63.0 -1339.0 Acrobot-v1 DDQCNN PCA
-182.30 116.44 -71.0 -2133.0 Acrobot-v1 DQN GS
-542.64 803.36 -64.0 -10002.0 Acrobot-v1 DDQN GS
-550.60 522.97 -69.0 -7599.0 Acrobot-v1 DDQCNN PCA Mini
-863.38 413.66 -202.0 -3397.0 Acrobot-v1 DQCNN PCA Mini
-868.68 429.20 -113.0 -2913.0 Acrobot-v1 DQCNN PCA

-1654.28 893.27 -366.0 -5749.0 Acrobot-v1 DQN PCA

Table 6: Model comparison with final hyperparameters over 100,000 training iterations.

parameters but now over 20,000), we were able
to see strong performances from these previously
underperforming models.

With these results, we chose the best overall
neural network architecture, a two-layer model
containing 128 nodes in the first hidden layer and
64 nodes in the second hidden layer. Compar-
ing its results to the rest of the neural networks,
we do find a significant increase in the perfor-
mance. Note that we were unfortunately unable
to try larger network configurations on the con-
volutional models. Being the case that we were
unable to even run many of the simulations lo-
cally, we decided that if the simulations could not
run on our own machines, they would not be fair
agents to play the games anyway.

4.3.2 Further Testing

With our new DDQN-PCA model, we decided
to compare its performance over a longer train-
ing time to the original model. Indeed, we con-
tinue to see much better performance from our
PCA model, even compared to our best previous
model, although at the cost of a much slower con-
vergence. For instance, in CartPole, the mean

reward reached more than 80, which is nearly
20 more than our previous best model; addition-
ally, the maximum reward we saw was 408, more
than 50 higher than our previous maximum. Full
results are available in Figure 10 and Table 8.

5 Discussion

Throughout this exploratory project, we found
that learning to play games from image data
alone makes each problem significantly harder.
While we had the option to read in metadata
about each state such as the pole’s angle, the
cart’s location, or the car’s velocity, we decided
that the best way to standardize the performance
of our model was to ensure that each game fed
in only pixels. Note that there are many simu-
lations online that claim to learn better scores
for CartPole even just by using pixel data, but
these simulations take advantage of knowing the
cart location and cropping the whitespace around
the cart, drastically improving the performance
of the convolution. On the other hand, we sought
to learn the games without any prior knowledge
whatsoever.

19

STAT 234 Michael Ge, Richard Ouyang

mean std max min game model layer sizes

-202.72 52.17 -89.0 -431.0 MountainCar-v0 DDQN-PCA [128]
-330.57 99.83 -159.0 -923.0 MountainCar-v0 DDQN-PCA [64]
-337.95 139.88 -159.0 -1629.0 MountainCar-v0 DDQN-PCA [32]
-386.76 253.57 -106.0 -1574.0 MountainCar-v0 DDQN-PCA [128-128-64-32]
-392.24 168.77 -122.0 -1123.0 MountainCar-v0 DDQN-PCA [64-32]
-393.12 161.26 -117.0 -944.0 MountainCar-v0 DDQN-PCA [32-32]
-400.07 189.48 -107.0 -1209.0 MountainCar-v0 DDQN-PCA [64-64]
-401.32 183.10 -148.0 -1366.0 MountainCar-v0 DDQN-PCA [128-64]
-405.84 123.67 -204.0 -831.0 MountainCar-v0 DDQN-PCA [16]
-498.66 237.75 -162.0 -1573.0 MountainCar-v0 DDQN-PCA [32-16]
-498.93 297.34 -119.0 -1767.0 MountainCar-v0 DDQN-PCA [128-64-32]
-518.32 273.43 -127.0 -1504.0 MountainCar-v0 DDQN-PCA [64-16]
-571.04 343.37 -140.0 -2108.0 MountainCar-v0 DQN-PCA [32-32]
-584.62 347.47 -131.0 -2104.0 MountainCar-v0 DDQN-PCA [64-32-16]
-586.17 362.75 -118.0 -2239.0 MountainCar-v0 DQN-PCA [128-64]
63.71 26.29 202.0 8.0 CartPole-v0 DDQN-PCA [128-128-64-32]
57.89 24.10 187.0 8.0 CartPole-v0 DDQN-PCA [128-64-32]
52.73 24.69 155.0 8.0 CartPole-v0 DDQN-PCA [128-64]
50.33 22.70 192.0 8.0 CartPole-v0 DDQN-PCA [64-64]
50.31 21.42 145.0 8.0 CartPole-v0 DDQN-PCA [64-32-16]
46.99 22.09 200.0 8.0 CartPole-v0 DDQN-PCA [128]
46.29 18.98 155.0 8.0 CartPole-v0 DDQN-PCA [64-32]
45.38 21.62 157.0 8.0 CartPole-v0 DDQN-PCA [64-16]
44.77 19.33 151.0 9.0 CartPole-v0 DDQN-PCA [16-32-64]
43.82 21.18 173.0 8.0 CartPole-v0 DDQN-PCA [16-32]
43.11 18.27 159.0 8.0 CartPole-v0 DDQN-PCA [32-32-16]
42.28 21.60 157.0 8.0 CartPole-v0 DDQN-PCA [64]
39.52 19.67 137.0 8.0 CartPole-v0 DDQN-PCA [32]
38.42 16.44 142.0 8.0 CartPole-v0 DDQN-PCA [16]
38.31 19.40 141.0 8.0 CartPole-v0 DDQN-PCA [32-32]

-152.06 74.84 -69.0 -639.0 Acrobot-v1 DDQN-PCA [128-64]
-197.20 80.54 -81.0 -627.0 Acrobot-v1 DDQN-PCA [128]
-255.91 127.49 -94.0 -804.0 Acrobot-v1 DDQN-PCA [64]
-320.71 172.92 -101.0 -1504.0 Acrobot-v1 DDQN-PCA [64-16]
-457.60 239.31 -148.0 -1618.0 Acrobot-v1 DDQN-PCA [32]
-561.87 296.20 -139.0 -1731.0 Acrobot-v1 DDQN-PCA [64-32]
-585.08 265.25 -160.0 -1489.0 Acrobot-v1 DDQN-PCA [32-16]
-613.99 310.42 -163.0 -2200.0 Acrobot-v1 DDQN-PCA [32-32-16]
-639.41 303.16 -171.0 -2040.0 Acrobot-v1 DDQN-PCA [64-64]
-668.13 332.37 -144.0 -2084.0 Acrobot-v1 DDQN-PCA [64-32-16]
-695.74 323.70 -155.0 -1838.0 Acrobot-v1 DQN-PCA [64]
-704.81 372.62 -238.0 -2906.0 Acrobot-v1 DQN-PCA [16]
-708.33 353.32 -189.0 -2049.0 Acrobot-v1 DDQN-PCA [16]
-735.68 356.00 -259.0 -2472.0 Acrobot-v1 DQN-PCA [16-32-64]
-763.06 340.41 -123.0 -1670.0 Acrobot-v1 DDQN-PCA [128-128-64-32]

Table 7: Results from testing several feed-forward deep neural network architectures for the DDQN-
PCA model, sorted by reward in descending order. Only the top fifteen results from each game are
shown. All experiments used a Huber loss function, learning rate annealing, a batch size of 128, a
learning rate of 0.001, and a 0.1 weight decay for 20,000 training iterations.

One thing not discussed in great detail was
how we decided upon which parameters we chose
at every step. In addition to empirical evalu-

ations, we also built generalized linear models
on our hyperparameters, treating them as cat-
egorical variables and regressing on the mean.

20

STAT 234 Michael Ge, Richard Ouyang

0 5000 10000 15000 20000 25000 30000
episodes

0

25

50

75

100

125

150

175

200

re
w

ar
d

CartPole DDQN-GS EpsilonGreedy rewards

raw
rolling mean over 1624

(a) Rewards by episode from training the DDQN-GS
model on the CartPole game.

0 2500 5000 7500 10000 12500 15000 17500
episodes

0

25

50

75

100

125

150

175

200

re
w

ar
d

CartPole DDQN-PCA EpsilonGreedy rewards

raw
rolling mean over 833

(b) Rewards by episode from training the DDQN-PCA
model on the CartPole game.

0 500 1000 1500 2000 2500
episodes

2000

1750

1500

1250

1000

750

500

250

0

re
w

ar
d

Acrobot DDQN-GS EpsilonGreedy rewards

raw
rolling mean over 141

(c) Rewards by episode from training the DDQN-GS
model on the Acrobot game.

0 1000 2000 3000 4000 5000 6000
episodes

2000

1750

1500

1250

1000

750

500

250

0

re
w

ar
d

Acrobot DDQN-PCA EpsilonGreedy rewards

raw
rolling mean over 299

(d) Rewards by episode from training the DDQN-PCA
model on the Acrobot game.

0 1000 2000 3000 4000 5000 6000
episodes

5000

4000

3000

2000

1000

0

re
w

ar
d

MountainCar DDQN-GS EpsilonGreedy rewards

raw
rolling mean over 310

(e) Rewards by episode from training the DDQN-GS
model on the MountainCar game.

0 1000 2000 3000 4000 5000
episodes

5000

4000

3000

2000

1000

0

re
w

ar
d

MountainCar DDQN-PCA EpsilonGreedy rewards

raw
rolling mean over 273

(f) Rewards by episode from training the DDQN-PCA
model on the MountainCar game.

Figure 10: Rewards by episode for two DQN variants for all three games. All trials used the
hyperparameters detailed in Figure 5.

21

STAT 234 Michael Ge, Richard Ouyang

mean std max min game model

-135.79 29.42 -84.0 -401.0 MountainCar-v0 DDQN-PCA
-176.94 63.44 -86.0 -1259.0 MountainCar-v0 DQN-GS
-197.65 53.98 -88.0 -791.0 MountainCar-v0 DDQN-GS
-660.19 471.74 -102.0 -3688.0 MountainCar-v0 DQN-PCA
83.34 49.25 408.0 8.0 CartPole-v0 DDQN-PCA
44.76 26.82 229.0 8.0 CartPole-v0 DDQN-GS
31.59 21.88 234.0 8.0 CartPole-v0 DQN-GS
29.56 16.25 167.0 8.0 CartPole-v0 DQN-PCA

-106.09 37.88 -63.0 -445.0 Acrobot-v1 DDQN-PCA
-218.67 155.54 -66.0 -2227.0 Acrobot-v1 DQN-GS
-681.62 629.47 -74.0 -10002.0 Acrobot-v1 DDQN-GS

-2353.20 1410.17 -281.0 -10002.0 Acrobot-v1 DQN-PCA

Table 8: Comparison between our (D)DQN-PCA models and the literature’s convolutional models
using our final hyperparameters (see Table 5) over 100,000 training iterations.

By examining the coefficients of the model, this
gave us a rough estimate of how different fea-
tures were correlated with the mean reward of
each model. The results were consistent with our
own observations of the performances of specific
hyperparameters.

An interesting problem that we encountered
while testing different models was that there was
little correlation between the loss function and
the performance of the model. Indeed, more
often than not, the loss function hovered around
the same value, typically less than 0.1, as the
simulations ran without ever converging toward
an actual minimization. Typically, this indicates
that we are underfitting our model, since the
model is never able to minimize the loss; however,
online discussions claim that this is not a problem
in a reinforcement learning setting [3].

To see a less noisy version of the per-episode
reward, we also kept track of changes in Q-values
as the model trained. We randomly sampled a
set of 128 states from the replay memory and de-
termined the average Q-value over all states after
each episode. Over time, we expect the sample
states’ Q-values to increase as the policy improves
and the expected future return increases. Indeed,
the Q-values for the sample states do tend to
increase as the policy learns. Notably, for games
with negative rewards (Acrobot and Mountain-

Car), the sample Q-value starts around 0 and
decreases sharply at the very beginning of the
training before increasing slightly as the policy

converges. This phenomenon is expected and is
an artifact of the fact that the model initially
does not yet know that typical episodes have neg-
ative rewards. Additionally, because the sample
Q-values are determined using the maximum Q-
value over all actions, which tends to be an over-
estimate, the Q-values tend to be overestimates
of the empirical rewards for all games. Addition-
ally, this observation is consistent with the fact
that the action is selected using the Q-value for
the optimal policy, which tends to be better than
the ε-greedy policy’s occasional random action
selection. See Figure 11 for an example Q-value
plot.

6 Conclusion

To conclude, we have built up a robust coding
framework to test different Q-function models on
a variety of discrete-space OpenAI games. The
results suggest that compared to the original
model, the de-noising and state-space reduction
provided by PCA helps PCA-based variants of
DQNs perform quite well in several games. How-
ever, these variants do not do as well in games
with exceptionally long durations and sparse re-
wards. With the right model regularization and
network architecture, PCA is a promising way
to increase model performance for reinforcement
learning by reducing the state space and elimi-
nating the need for DQNs to learn unimportant
feature information.

22

STAT 234 Michael Ge, Richard Ouyang

0 2500 5000 7500 10000 12500 15000 17500
episodes

0

20

40

60

80

100

120

140

160
sa

m
pl

e
st

at
e

Q
-v

al
ue

CartPole DDQN-PCA EpsilonGreedy sample Q

raw
rolling mean over 833

Figure 11: An example plot of the average op-
timal Q-value over 128 randomly chosen states.
This particular graph is for our best model, a
DDQN-PCA with two hidden layers of sizes 128
and 64, trained for 100,000 minibatch updates.
Note the steady increase in average optimal Q-
value as the policy improves.

6.1 Further Directions

The obvious next step would be to test the convo-
lutional models using different and larger network
configurations to see whether PCA continues to
provide improvements. Given our findings, be-
cause CNNs capture structural information, we
expect that convolutions will improve enough to
do better than the DDQN-PCA model tested at
the end of this paper and will be further improved
by PCA denoising or dimensionality reduction.

Other promising directions include perform-
ing the same PCA analysis for DQN performance
on other games, particularly Atari games. Games
with large (but discrete) action spaces are also
good candidates, since the games used in our
experiments had only two or three actions. Ad-
ditionally, extensions to games with continuous
action spaces, which would likely need a signifi-
cantly different network architecture (such as a
convolutional neural network linked with a net-
work in which actions are the inputs), pose an
interesting problem for DQNs, whose network
structure relies heavily on the presence of a dis-
crete action space.

We had severely limited computational power
and time, so extending this work using more var-

ied learning rates and annealing schedules could
offer better performance. Also, computing using
GPUs (which were unfortunately not available)
rather than CPUs would have been a substantial
time boost.

Recent developments and additions to DQNs
also suggest promising improvements to the gen-
eral DQN framework as well as the use of PCA
in reinforcement learning. For instance, adding
hindsight experience replay [1] or prioritized ex-
perience replay [8], particularly to MountainCar,
which is heavily dependent on choosing the right
transitions in each minibatch update, would fur-
ther improve our algorithms’ performance and
check the robustness of using PCA with slightly
different learning algorithms.

23

STAT 234 Michael Ge, Richard Ouyang

References

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray,
Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, Pieter Abbeel,
and Wojciech Zaremba. Hindsight experience
replay. In Advances in Neural Information
Processing Systems, pages 5048–5058, 2017.

[2] Greg Brockman, Vicki Cheung, Ludwig Pet-
tersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym,
2016.

[3] shimao. Loss not decreasing but performance
is improving. Cross Validated. https://

stats.stackexchange.com/q/313881 (ver-
sion: 2017-11-15).

[4] Yasutaka Kishima and Kentarou Kurashige.
Reduction of state space in reinforcement
learning by sensor selection. Artificial Life
and Robotics, 18(1-2):7–14, 2013.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Play-
ing Atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529, 2015.

[7] Adam Paszke, Sam Gross, Soumith Chintala,
and Gregory Chanan. PyTorch, 2017.

[8] Tom Schaul, John Quan, Ioannis Antonoglou,
and David Silver. Prioritized experience re-
play. arXiv preprint arXiv:1511.05952, 2015.

[9] Hado Van Hasselt, Arthur Guez, and David
Silver. Deep reinforcement learning with dou-
ble Q-learning. In AAAI, volume 16, pages
2094–2100, 2016.

24

https://stats.stackexchange.com/users/26948/shimao
https://stats.stackexchange.com/q/313881
https://stats.stackexchange.com/q/313881

STAT 234 Michael Ge, Richard Ouyang

A Setup Instructions

1. Download/install Anaconda

2. Clone this paper’s repository: https://github.com/hahakumquat/stat234-project

3. Inside the directory containing the repository, create and activate the conda environment,
which consists of all the necessary packages:

conda env create -f environment.yml

source activate stat234

4. Fix errors if unmerged into master OpenAI Gym branch

• Consistent with the pull request at https://github.com/openai/gym/pull/972, in
each of the game files in gym/gym/envs/classic_control/, add dtype=np.float32 to
each spaces.Box() initialization to suppress the logger warning

5. Run main.py

• python main.py -h for command-line argument instructions and a full list of arguments
and defaults.

• python main.py -g CartPole-v0 -m DQN GS -e 1000 for training a normal grayscale
DQN on CartPole for 1000 training steps

• python main.py -g Acrobot-v1 -m DDQCNN PCA for training a convolutional PCA vari-
ant of a DDQN

• python main.py -g CartPole-v0 -a Random -e 1000 for a random policy

25

https://github.com/hahakumquat/stat234-project
https://github.com/openai/gym/pull/972

	Introduction
	Background
	MDP Overview
	Deep Q-Networks
	Principal Component Analysis
	OpenAI Gym
	PyTorch

	Methods
	Initial Setup
	Image Preprocessing
	Model Structures
	Hyperparameters
	Implementation Details

	Results
	Random Policy
	Hyperparameter Tuning Results
	First Grid Search (10,000 Iterations)
	Second Grid Search (50,000 Iterations)
	Third Grid Search (100,000 Iterations)

	PCA Networks
	Testing Layer Sizes
	Further Testing

	Discussion
	Conclusion
	Further Directions

	Setup Instructions

